2-[(1,4-Benzodioxan-2-yl)methyl]imidazole Hydrochloride (10). To a mixture of 35 g (200 mmol) of $4,{ }^{16 \mathrm{a}, \mathrm{b}} 14 \mathrm{~g}$ of ethanol, and 100 mL of diethyl ether was added 12 g of HCl gas. The flask containing the mixture was tightly stoppered and left at $5^{\circ} \mathrm{C}$ for 4 days, at which time the solid imidate hydrochloride 7 was isolated by filtration. After the solid was washed with diethyl ether, there was obtained $35 \mathrm{~g}(\sim 68 \%)$, which was used without further purification. A mixture of 35 g (136 mmol) of 7, 19.91 $\mathrm{g}(183 \mathrm{mmol})$ of aminoacetaldehyde diethyl acetal, and 450 mL of ethanol was heated at reflux for 18 h . Evaporation of excess solvent left 61.6 g of an oily residue. This residue was mixed with 600 mL of 4 N HCl , and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 24 h. The mixture was filtered to remove a small amount of solid, and the filtrate was extracted with dichloromethane. The aqueous layer was basified with sodium hydroxide and thoroughly extracted with dichloromethane. Evaporation of solvent left a residue, which was filtered through 70 g of $70-230$ mesh silica gel with 500 mL of 10% methanol-ethyl acetate. Evaporation of the filtrate left an oil. This material was taken up in 70 mL of 2-propanol, and an HCl salt was made by passing HCl gas into the solution. The salt was collected by filtration and was washed with diethyl ether: ${ }^{13} \mathrm{C}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}$) $\delta 27.9$ (t), 67.1 (t), 70.9 (d), 118.0 (d), 118.3 (d), 119.9 (d), 123.1 (d), 123.3 (d), 142.6 (s$), 143.2$ (s$), 143.5$ (s). Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$.

1-Ethyl-2-[(1,4-benzodioxan-2-yl)methyl]imidazole Hy drochloride (13). To a solution of $75 \mathrm{~g}(347 \mathrm{mmol})$ of 10 in 250 mL of DMF at $0^{\circ} \mathrm{C}$ was added 20 g (41.6 mmol) of 50% sodium hydride in mineral oil in two equal portions. After 30 min at room temperature, 56.8 g (364 mmol) of ethyl iodide was added dropwise
(30) Arunlakshana, O.; Schild, H. O. Br. J. Pharmacol. 1959, 14, 48.
over 15 min at $0^{\circ} \mathrm{C}$. The mixture was then stirred for 30 min at room temperature. The mixture was poured into 700 mL of water, and the resulting mixture was extracted with three $200-\mathrm{mL}$ portions of ethyl acetate. The combined extract was washed with 100 mL of water and then with two $250-\mathrm{mL}$ portions of $5 \% \mathrm{HCl}$ solution. The combined acid extract was washed with 100 mL of ethyl acetate and then made basic and concentrated ammonium hydroxide. The product was extracted with two $200-\mathrm{mL}$ portions of ethyl acetate. Evaporation of solvent gave an oil, which was filtered through 100 g of $70-230$ mesh silica gel with 500 mL of ethyl acetate. Evaporation of the filtrate gave 58.1 g of an off-white solid: mp 78-79 ${ }^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.35(\mathrm{~d}, 2 \mathrm{H}, J=7 \mathrm{~Hz}), 3.05$ (d, $2 \mathrm{H}, J=6 \mathrm{~Hz}$), $3.72-4.85(\mathrm{~m}, 5 \mathrm{H}), 6.7-7.33(\mathrm{~m}, 6 \mathrm{H})$.

The hydrochloride salt was prepared by passing excess HCl gas into a methanol solution of 13 , followed by precipitation with diethyl ether, mp $174-175^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-[(1,4-Benzodioxan-2-yl)methyl]benzimidazole Hydrochloride (22). A mixture of 5 g (19.4 mmol) of $7,2.16 \mathrm{~g}(20 \mathrm{mmol})$ of o-phenylenediamine, and 50 mL of ethanol was heated at reflux for 18 h . The solvent was evaporated, and the residue was suspended in 150 mL of 5% ammonium hydroxide. The product was extracted into ethyl acetate. Evaporation of the ethyl acetate gave an oil. The hydrochloride salt was prepared by passing excess HCl into a methanol solution of 22 , followed by precipitation with diethyl ether: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}-\mathrm{D}_{2} \mathrm{O}\right) \delta 29.14(\mathrm{t}), 67.40(\mathrm{t}), 70.98$ (d), 114.44 (d), 117.85 (d), 117.98 (d), 122.89 (d), 127.05 (d), 131.83 (s), 142.69 (s), 143.31 (s), 150.14 (s). Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{2}\right) \mathrm{C}$, H, N.

Acknowledgment. We thank Paul Cheung for $\log D$ determinations and Dr. Michael Maddox, Ms. Janis Nelson, and Ms. Lilia Kurz for analytical assistance.

Arylethanolamines Derived from Salicylamide with α - and β-Adrenoceptor Blocking Activities. Preparation of Labetalol, Its Enantiomers, and Related Salicylamides

James E. Clifton, Ian Collins, Peter Hallett, David Hartley, Lawrence H. C. Lunts,, and Philip D. Wicks

Chemistry Department, Glaxo Group Research Ltd., Ware, Hertfordshire, SG12 OD England. Received August 20, 1981

Abstract

A series of phenethanolamines (3) based on salicylamide has been prepared and shown to possess β-adrenergic blocking properties. When the basic nitrogen atom was substituted by some aralkyl groups, the compounds also blocked α-adrenoceptors. The 1-methyl-3-phenylpropyl derivative labetalol (34) is antihypertensive in animals and man, and syntheses of its four stereoisomers are described. The enantiomer 90 with the R configuration at both asymmetric centers possessed most of the β-blocking activity but little α-blocking activity. That with the S configuration at the alcoholic carbon and the R configuration on the amino substituent, 89 , is predominantly an α-adrenoceptor blocking agent.

In a previous publication ${ }^{1}$ we reported the preparation of the saligenins 2 from the salicyl esters 1 to give potent

(1) D. T. Collin, D. Hartley, D. Jack, L. H. C. Lunts, J. C. Press, and P. Toon, J. Med. Chem., 13, 674 (1970).
β_{2}-adrenoceptor stimulants. In an extension of this work, aimed at investigating the effect of analogous structures on adrenergic activity, we converted the esters 1 into the corresponding amides 3 and found that they blocked β adrenoceptors. ${ }^{2}$ Furthermore, when these amides were substituted on the basic nitrogen atom with specific aralkyl groups, the products possessed, in addition, α-adrenoceptor blocking activity and a capacity to produce rapid and long-lasting falls in blood pressure in the rat and dog. ${ }^{3}$ This article describes a series of analogues 3 and the development of a novel antihypertensive agent, labetalol (34), operating by antagonism of α-adrenoceptors in which side effects, such as reflex tachycardia, are minimized by the concomitant antagonism of cardiac β-adrenoceptors. The biological activity of labetalol has been extensively reviewed. ${ }^{4-6}$
(2) L. H. C. Lunts, P. Toon, and D. T. Collin, U. K. Patent 1200886 (1970).
(3) L. H. C. Lunts and D. T. Collin, U.K. Patent 1266058 (1972).

Scheme I

Table I. 5-(2-Amino-1-hydroxyethyl)salicylic Acid Esters ${ }^{a}$

no.	R^{3}	formula	method	yield, \%	$\begin{aligned} & \text { crystn } \\ & \text { solvent } b \end{aligned}$	$\mathrm{mp},{ }^{\circ} \mathrm{C}$
4	2-FC6 $\mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{2}$ CHMe	$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{FNO}_{4} \cdot \mathrm{HCl}$	E^{c}	76	$\mathrm{Ea}-\mathrm{Pe}$	139-143
5	$4-\mathrm{FC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHMe}$	$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{FNO}_{4} \cdot \mathrm{HCl}$	E^{c}	75	$\mathrm{Me}-\mathrm{Ea}$	159-163
6	3,4-($\left.\mathrm{CH}_{2} \mathrm{O}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHMe}$	$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{6} \cdot \mathrm{HCl}$	E^{c}	93	$\mathrm{Ea}-\mathrm{Pe}$	187-191
7	$4-\mathrm{AcNHC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHMe}$	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5}$	E^{c}	51	$\mathrm{Ea}-\mathrm{Pe}$	105
8	$\mathrm{PhCO}\left(\mathrm{CH}_{2}\right)_{2}$	$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{5} \cdot \mathrm{HCl}$	d	34	Ip	165-167
9	$\mathrm{PhCHOH}\left(\mathrm{CH}_{2}\right)_{2}$	$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{5}$	e	28	Ea	145-148
10	$\mathrm{PhCH}_{2} \mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right) \mathrm{CHMe}$	$\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{5} \cdot \mathrm{HCl}$	F^{f}	65	$\mathrm{Ea}-\mathrm{Pe}$	176-177
11	PhCONH-(4-c-C $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}$)- $\mathrm{CH}_{2} \mathrm{CHMe}$	$\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{5}$	E^{c}	51		157-162
12	$\mathrm{PhNHCH}_{2} \mathrm{CHMe}$	$\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{HCl}$	E^{c}	84	$\mathrm{Me}-\mathrm{Ea}$	183-185
13	PhNHCOCH2 ${ }_{2} \mathrm{CHMe}$	$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}$	E^{c}	57	Et	124-128

${ }^{a}$ For analogous esters not described in this table, see ref 1. b $\mathrm{Al}=\mathrm{EtOH} ; \mathrm{B}=\mathrm{PhH} ; \mathrm{Ea}=\mathrm{EtOAc} ; \mathrm{Et}=\mathrm{Et} \mathrm{EtO}_{2} \mathrm{O} \mathrm{Ip}=i-\mathrm{PrOH}$; $\mathrm{Me}=\mathrm{MeOH} ; \mathrm{Pe}=$ petroleum ether (bp $\left.60-80^{\circ} \mathrm{C}\right) .{ }^{c}$ Reductive alkylation of the N, N-dibenzylglycyl ester (Scheme I). ${ }^{d}$ See Experimental Section. ${ }^{e}$ Reduction of 8 with NaBH_{4}. f Reductive alkylation of the primary amine ester (Scheme I).

Table II. 5-(N-Substituted-glycyl)salicylamides

no.	R^{1}	R^{3}	formula	method	yield, $\%$	crystn solvent a	$\mathrm{mp},{ }^{\circ} \mathrm{C}$
14	H	$\mathrm{Me}_{2} \mathrm{CH}$	$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl}$	C	77	Me	$216-218$
15	H	PhCH_{2}	$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$	D	53	Ea	$179-180$
16	Me	$\mathrm{Me}_{2} \mathrm{CH}$	$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl}$	C	64	$\mathrm{Al-Ea}$	$205-209$
17	H	Me 3	C	$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl}$	C	80	Me
18	H	$\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHMe}$	$\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}$	D	680 dec		

${ }^{a}$ See footnote b to Table I.

Lately, other phenethanolamines have been shown to combine β-adrenoceptor blocking activity with α-blocking or vasodilating properties, ${ }^{7-9}$ and one of our analogues,
(4) R. T. Brittain, D. M. Harris, D. Jack, and D. A. Richards, Pharmacol. Biochem. Prop. Drug Subst., 2, 299 (1979).
(5) R. T. Brittain and G. P. Levy, Br. J. Clin. Pharmacol., 3 (Suppl), 681 (1976).
(6) R. N. Brogden, R. C. Heel, T. M. Speight, and E. S. Avery, Drugs, 15, 251 (1978).
(7) K. Imai, K. Niigata, T. Fujikura, S. Hashimoto, and T. Takenaka, Japanese Patent 7961139 (1979); Chem. Abstr., 92, $22283 w$ (1980). Yamanouchi Pharmaceutical Co. Ltd., Japanese Patent 8053261 (1980); Chem. Abstr., 94, 46962 (1981).
medroxalol (53), has been the subject of detailed biological investigation. ${ }^{8}$ In addition, other β-adrenergic agents that induce a fall in peripheral resistance without reflex tach-
(8) (a) J. M. Grisar, G. P. Claxton, T. M. Bare, R. C. Dage, H. C. Cheng, and J. K. Woodward, J. Med. Chem., 24, 327 (1981). (b) H. C. Cheng, O. K. Reavis, Jr., J. M. Grisar, G. P. Claxton, D. L. Weiner, and J. K. Woodward, Life Sci., 27, 2529 (1980). (c) R. C. Dage, H. C. Cheng, and J. K. Woodward, J. Cardiovasc. Pharmacol., 3, 299 (1981).
(9) R. E. Philion, D. K. Phillips, S. C. Laskowski, D. C. Schlegel, R. R. Lorenz, P. H. Hernandez, and H. E. Lape, "Abstracts of Papers", 176th National Meeting of the American Chemical Society, Miami Beach, FL, Sept 1978, American Chemical Society, Washington, DC, 1978, Abstr MEDI 024.

Table III. (2-Amino-1-hydroxyethyl)salicylamides

no.	R^{1}	R^{3}			Pn	yield, \%	crystn solvent ${ }^{a}$	$\mathrm{mp},{ }^{\circ} \mathrm{C}$
19	H	$\mathrm{Me}_{2} \mathrm{CH}$	4	$\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$	A	53	B	155-156
20	Me	$\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHMe}$	5	$\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl}$	A	65		183-185

[^0]ycardia have been reported, e.g., prizidolol, ${ }^{10} \mathrm{MK}-761,{ }^{11}$ and bucindolol; ${ }^{12}$ these compounds, however, are aryloxypropanolamines.

Chemistry. The amides 3 were generally prepared from the corresponding esters 1^{1} by treatment with a methanolic solution of the appropriate amine or ammonium hydroxide at room temperature, followed by removal of any benzyl group by catalytic hydrogenation (Scheme I, methods A and B). This procedure was preferable to aminolysis of the intermediate glycyl esters, followed by hydrogenation (method C). A less flexible but otherwise satisfactory route involved the reaction of 5 -(bromoacetyl)salicylamide with an N-benzylamine, followed by catalytic reduction of the ketone and removal of the N-benzyl group (method D). The substituent R^{3} could also be introduced by reductive alkylation of dibenzylamino ketones (method E) or primary arylethanolamines (method F) with the appropriate carbonyl compound. Amides obtained by these routes are listed in Tables II-IV.

Since aminolyses of the phenolic ester 1 did not readily afford a hydroxamic acid 26 or a 2-hydroxyethyl amide 25, these were prepared from the benzyloxy ester 73 with hydroxylamine and 2-aminoethanol, respectively, followed by hydrogenolysis of both benzyl protecting groups.

73
Phenethanolamine esters were made by the method previously described; ${ }^{1}$ new compounds are shown in Table I.

The 4 -substituted salicylamides were much less accessible, and only the isopropylamino derivative 74 was prepared from the corresponding benzylamino ester 75^{1} by method A.

74, $\mathrm{X}=\mathrm{H}_{2} \mathrm{NOC} ; \mathrm{R}^{4}=\mathrm{H}$
75, $\mathrm{X}=\mathrm{MeO}_{2} \mathrm{C} ; \mathrm{R}^{4}=\mathrm{CH}_{2} \mathrm{Ph}$
Hitherto unreported ketones used in the reductive alkylation of amines (methods E and F) are listed in Table V. They were prepared either by catalytic reduction of

[^1]an unsaturated ketone (method G) or by alkylation of an amine or phenoxide with chloroacetone (method H).
\[

$$
\begin{gathered}
\mathrm{ArCH}=\mathrm{CHCOMe}_{\text {method } \mathrm{G}}^{\mathrm{H}_{2} \mathrm{Pd} / \mathrm{C}} \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{COMe}^{2} \\
\mathrm{ArOH}+\mathrm{ClCH}_{2} \mathrm{COMe} \xrightarrow[\text { method } \mathrm{H}]{\mathrm{ArOCH}}{ }_{2} \mathrm{COMe}^{2} \\
\mathrm{XNH}+\mathrm{ClCH}_{2} \mathrm{COMe} \xrightarrow[\text { method } \mathrm{H}]{ } \mathrm{XNCH}_{2} \mathrm{COMe}^{2} \\
\mathrm{X}=\text { ArMe or heterocyclyl residue }
\end{gathered}
$$
\]

Representative examples are given under Experimental Section.

When the substituent R^{3} was asymmetric, the products usually contained approximately 50% of each racemic pair of diastereoisomers. Their ratio could be assessed from the NMR spectra of their hydrochlorides. When determined in an isotropic solvent such as pyridine, two doublets due to the methyl group were observed at $\tau 9.02$; these doublets were separated by 1 Hz using a $60-\mathrm{MHz}$ spectrometer.

One compound, labetalol (34), was selected for development as an antihypertensive agent ${ }^{4}$ and is now marketed as Trandate.

Stereochemistry. Labetalol (34) contains two asymmetric centers and, therefore, consists of two racemic compounds. The method of preparation of labetalol hydrochloride (method D) and its crystallization from etha-nol-ethyl acetate consistently provided material with a mp of $188-191^{\circ} \mathrm{C}$. This product was a $50: 50$ mixture of the two components as assessed by NMR spectra in pyridine, by GLC, ${ }^{13}$ and by HPLC. Under carefully controlled conditions, it was possible to separate these racemic substances by fractional crystallization. Crystallization of the hydrochloride six times from ethanol gave "racemate I hydrochloride", mp $220^{\circ} \mathrm{C}$, whereas "racemate II" was preferentially obtained by four recrystallizations of labetalol base from ethanol, followed by conversion into the hydrochloride, $\mathrm{mp} 183^{\circ} \mathrm{C}$. Comparison of these two racemic modifications with labetalol (Table IV) showed that the α-blocking activity resided mainly in "racemate I", whereas the β-blocking activity is due almost entirely to "racemate II". These results have been confirmed in a recent publication. ${ }^{14}$
In order to correlate the biological activity with stereochemical structure, we synthesized the four individual enantiomers. ${ }^{15}$ This required the preparation of the R and S forms ${ }^{16}$ of 1-methyl-3-phenylpropanamine and their conversion into the corresponding mixtures of diastereo-

[^2]

mers of labetalol according to method D.
The (R)-amine 86 was prepared by asymmetric synthesis in a manner similar to that used to prepare some optically active amphetamine derivatives (Scheme II). ${ }^{17}$ Commercially available (R)-(+)- α-methylbenzylamine 83 was reductively alkylated with 4 -phenyl-2-butanone and hydrogen over Raney nickel catalyst at 50 psi to give a mixture containing the $(R R)$-amine 84 and the ($R S$)-amine 85 in a ratio of $9: 1$. This mixture was converted into the corresponding hydrochlorides and recrystallized twice from methanol-ethyl acetate to give the ($R R$)-amine 84 as its hydrochloride in 37% yield with an enantiomeric purity of $>99 \%$ as determined by GLC. ${ }^{13}$ Since the amine was too hindered to react with phenacyl halides, it was hydrogenolyzed over palladium on carbon at 50 psi to give the primary (R)-amine 86. This amine has been prepared previously by resolution of the ($R S$)-amine with (-)mandelic acid, ${ }^{18}(+)$-tartaric acid, ${ }^{19}$ and (-)-dibenzoyltartaric acid, ${ }^{20}$ and its stereochemistry has been assigned by degradative ${ }^{18,19}$ and $\mathrm{ORD}^{19,20}$ procedures. In view of the fact that the Czech ${ }^{19}$ and Dutch ${ }^{18}$ workers arrived at opposite conclusions, we confirmed that the levorotatory isomer (-)-86 had the R configuration by X-ray crystallography of the hydrochloride of the corresponding N benzylamine $87{ }^{21}$
Reductive alkylation of the (R)-amine 86 with benzaldehyde and hydrogen over a platinum catalyst gave the
(17) D. E. Nichols, C. F. Barfknecht, D. B. Rusterholz, F. Benington, and R. D. Morin, J. Med. Chem., 16, 480 (1973).
(18) J. van Dijk, V. G. Keizer, and H. D. Moed, Recl. Trau. Chim. Pays-Bas, 82, 189 (1963).
(19) O. Cervinka, E. Kroupova, and O. Belovsky, Collect. Czech. Chem. Commun., 33, 3551 (1968).
(20) V. P. Potapov, V. M. Dem'yanovich, and A. P. Terent'ev, Zh. Obshch. Khim., 35, 1538 (1965).
(21) P. Murray-Rust, "Molecular Structure and Biological Activity", W. L. Duaz, Ed., Elsevier, Amsterdam, in press.
N-benzyl derivative 87 , which was converted into a $1: 1$ mixture of the $S R+R R$ diastereomers 89 and 90 by method D. Although these compounds could be separated by fractional crystallization, a more efficient procedure utilized high-pressure liquid chromatography of their O, N-dibenzyl derivatives using a Waters Associates Prep. LC-system 500. Each isomer was isolated in approximately 35% yield, and debenzylation gave the $(R R)$ - and ($S R$)amines 89 and 90 in greater than 99% enantiomeric purity. The absolute configuration of the hydrochloride of the $R R$ enantiomer was established by X-ray crystallography. ${ }^{21}$

Starting with the commercially available (S)-(+)- α methylbenzylamine, we obtained the $S S$ and $R S$ enantiomers, 92 and 91 , in a similar manner.

91, $R S$

92, $S S$

Biological Test Procedures. ${ }^{5,22}$ Adrenoceptor blocking activities were determined in the anesthetized dog. The β-adrenoceptor blocking activity was assessed by the ability of the drug to antagonize the effects of intravenously administered (- -)-isoproterenol on heart rate and blood pressure. Antagonism of the pressor response to phenylephrine was used as a measure of α-blocking activity. The results were analyzed in the form of a Schild plot, ${ }^{23}$ and in each instance the dose required to cause a 10 -fold displacement of the agonist dose-response curve, the DR_{10} value, was calculated. These data are expressed in Table IV as equipotent doses relative to propranolol (β-blockade) and phentolamine (α-blockade), respectively. If required, the absolute DR_{10} values can be derived from these results using DR_{10} values shown for the reference compounds in Table VII.

In general only one determination was made for each antagonist. Labetalol (34), however, has been more extensively investigated. ${ }^{5,22 b}$ Its α - and β-antagonist potencies, determined as above, are expressed as DR_{10} values in Table VII and, from experiments in vitro, as $\mathrm{p} A_{2}$ values in Table VIII.

Structure-Activity Relationships. Arylethanolamines having alkyl groups on the basic nitrogen, compounds 21-27, were β-adrenoceptor blocking agents, the most active of which, 22, had an activity one-quarter that of propranolol. ${ }^{24}$ Substitution on the amidic nitrogen generally afforded less active compounds, 23-27. The 4 -isomer, 74, had a β-blocking activity one-tenth that of propranolol and five times that of its 5 -isomer, 21.

Some analogues when substituted on the basic nitrogen by specific aralkyl groups showed good α-blocking activity in addition to β-blockade, and compounds having this combination of effects, e.g., 34, 46, 47, and 48, caused rapid and sustained lowering of blood pressure in DOCA hypertensive rats and in conscious normotensive and renal hypertensive dogs. ${ }^{4}$ An apparently satisfactory balance between β - and α-adrenergic blockade was shown by labetalol (34), which was 4-16 times more potent at β - than at α-receptors. ${ }^{5}$ In these compounds, the capacity to block α-adrenoceptors appears to be associated with the aral-

[^3]| no. | R^{1} | R^{2} | R^{3} | | | | | | | | | $\begin{gathered} \text { ratio, } \\ \operatorname{DR}_{10}(\alpha) / \\ \operatorname{DR}_{10}\left(\beta_{1}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | formula | $\begin{gathered} \text { meth- } \\ \text { od } \\ \% \end{gathered}$ | | crystn solvent ${ }^{a}$ | $\mathrm{mp},{ }^{\circ} \mathrm{C}$ | β-blockade ${ }^{\text {b }}$ | | α-block-
 ade: ${ }^{c}$
 blood
 press. | |
| | | | | | | | heart rate | | blood press. | | |
| 21 | H | H | $\mathrm{Me}_{2} \mathrm{CH}$ | $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl}$ | C | 73 | | $\mathrm{Me}-\mathrm{Ea}$ | 207-208 | 50 | | | |
| 22 | H | H | $\mathrm{Me}_{3} \mathrm{C}$ | $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl}$ | C | 75 | Me-Ip | 203-204 | 4 | | | |
| 23 | Me | H | $\mathrm{Me}_{2} \mathrm{CH}$ | $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl}$ | C | 71 | Al | 208-209 | > 50 | | | |
| 24 | PhCH_{2} | H | $\mathrm{Me}_{2} \mathrm{CH}$ | $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl}$ | B | 44 | $\mathrm{Me}-\mathrm{Ea}$ | 211-212 | >50 | | | |
| 25 | $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{2}$ | H | $\mathrm{Me}_{2} \mathrm{CH}$ | $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot \mathrm{HCl}$ | d | 83 | Ip | 195 | >50 | | | |
| 26 | OH | H | $\mathrm{Me}_{2} \mathrm{CH}$ | $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{e}$ | d | 30 | | 186-188 | 20 | | | |
| 27 | NH_{2} | H | $\mathrm{Me}_{3} \mathrm{C}$ | $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ | B | 78 | | >300 | 100 | | | |
| 28 | H | H | $\mathrm{PhCH}_{2} \mathrm{CHMe}$ | $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl}$ | E | 87 | Me-Ea | 195-196 | 43 | 38 | 15 | 3 |
| 29 | H | H | | $\begin{aligned} & \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} . \\ & \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}^{f} \end{aligned}$ | E | 6 | | frothed 90 | 43 | 23 | | |
| 30 | H | H | | $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3}$ | E | 40 | B | 126-130 | 70 | 37 | 18 | 2 |
| 31 | H | H | | $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{\text {g }}$ | E | 37 | B | 125-129 | 70 | 97 | NA ${ }^{u}$ | |
| 32 | H | H | PhCONH-(4-c- $\left.\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}\right)-\mathrm{CH}_{2} \mathrm{CHMe}$ | $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4}$ | B | 86 | $\mathrm{Ea}-\mathrm{Pe}$ | 120-125 | 36 | 100 | NA | |
| 33 | H | H | $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3}$ | $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl}$ | F | 30 | $\mathrm{Me}-\mathrm{Ea}$ | 199-200 | 13 | 87 | 59 | 36 |
| 34 | H | H | $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHMe}$ | $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl}$ | D | 67 | Al -Ea | 187-189 | 4 | 17 | 8 | 16 |
| 35 | H | H | $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CMe}_{2}$ | $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ | B | 80 | | 152-154 | 5 | 13 | $\geqslant 10$ | |
| 36 | H H | H H | $\mathrm{Ph}_{2} \mathrm{CHCH}_{2} \mathrm{CHMe}$ | $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl}$ | E | 27 | Al | 220 | 16 | 93 | 24 | 11 |
| 37 | H | $\stackrel{\mathrm{H}}{ }$ | $\mathrm{PhCH}_{2} \mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right) \mathrm{CHMe}$ | $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl}$ | B | 83 | $\mathrm{Me}-\mathrm{Ea}$ | 168 | 48 | 16 | NA | |
| 38 | H H | H H | $\left.\mathrm{PhCH}^{\mathrm{Ph}(\mathrm{OH}}\right)^{\text {CHCH}} \mathrm{CH}_{2} \mathrm{CH}_{2}$ | $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}^{h}$ | B | 80 | | 80-94 | 31 | 20 | ${ }^{10}$ | 3 |
| 39 | H
 H | H
 H | $\mathrm{PhNHCH}_{2} \mathrm{CHMM}^{\text {Ph }}$ | $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{C}^{\text {c }}$-0.5 $\mathrm{H}_{2} \mathrm{O}$ | $\underset{\text { B }}{\text { B }}$ | 30 | $\mathrm{Ea}_{\mathrm{Et}} \mathrm{Pe}$ | 124-126 | 9 24 | 29 18 | NA | |
| 40 | H H | H H | $\mathrm{PhNMeCH}_{2} \mathrm{CHMe}$ | $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ | E | 58 | Et | 128-131 | 24 | 18 | ${ }^{9}{ }^{9}$ | 3 |
| 41 | H H | H H | $\mathrm{PhNEtCH}_{2} \mathrm{CHMe}$ | $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ | E | 44 | $\mathrm{B}_{\mathrm{E}-\mathrm{Pe}}$ | 132-137 | 26 127 | 90 160 | NA | |
| 42 43 | H H | H H | PhNCHMe ${ }_{2} \mathrm{CH}_{2} \mathrm{CHMe}$ PhNAcCH 2 CHMe | $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ $\mathrm{C}_{2} \mathrm{H}_{25} \mathrm{~N}_{3}$. | $\underset{\mathrm{E}}{\mathrm{E}}$ | 66 14 | $\mathrm{Ea}-\mathrm{Pe}$ | $137-141$ $120-125$ | 127 | 160 126 | NA | |
| 43 | H | H | PhNAcCH ${ }_{2} \mathbf{C H M e}$ | $\begin{gathered} \mathrm{C}_{20} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{4} \\ \mathrm{HCl}-0.5 \mathrm{H}_{2} \mathrm{O} \end{gathered}$ | E | 14 | | 120-125 | $\begin{array}{r}6 \\ \\ \hline 8\end{array}$ | 126 | NA | |
| 44 | H | H | 4-MeC $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHMe}$ | $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}^{i}$ | $\underset{\text { E }}{\text { E }}$ | 42 45 | B | $140-145$ $131-133$ | 28 36 | | 23 | 8 |
| 45 | H | H | $4-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHMe}$ | $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}$ | E | 45 | | 131-133 | 36 | 360 | | |
| 46 | H | H H | $2-\mathrm{FC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHMe}$ | $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{FN}_{2} \mathrm{O}_{3}$ | B | 32 39 | Et | 145-150 | 4 2 | 14 | 12 | 24 75 |
| 47 | H H | H H | $3-\mathrm{FC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHMMe}$ $4-\mathrm{FC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHMe}$ | $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{FN}_{2} \mathrm{O}_{3}$ $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{FN}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl}$ | B | 39 90 | $\mathrm{Me}-\mathrm{Ea}$ | $146-150$ $212-213$ | $\stackrel{2}{4}$ | 7 29 | 16 10 | 75 18 |
| 49 | H | H | $4-\mathrm{ClC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHMe}$ | $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl}$ | E | 13 | $\mathrm{Me}-\mathrm{Ea}$ | 227 | 10 | 50 | 34 | 26 |
| 50 | H | H | $4-\mathrm{HOC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHMe}$ | $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot \mathrm{HCl}$ | F | 23 | $\mathrm{Me}-\mathrm{Ea}$ | 168-170 | 7 | 33 | >30 | |
| 51 | H | H | 4-MeOC ${ }_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHMe}$ | $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{j}$ | F | 63 | Ea-B | 152 | 5 13 | 57 | $\begin{array}{r}27 \\ \hline 10\end{array}$ | 43 |
| 52 | H | $\stackrel{\mathrm{H}}{\mathrm{H}}$ | $3,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHMe}$ | $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5}$ | E | 41 81 | $\mathrm{Ea}^{\text {- }} \mathrm{Pe}$ | 115-118 | 13 | 73 33 | > NA | |
| 53 | H | H | $3,4-\left(\mathrm{CH}_{2} \mathrm{O}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHMe}$ | $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5} \cdot \mathrm{HCl}$ | B | 81 | $\mathrm{Me}-\mathrm{Ea}$ | 217-223 | 7 | 33 | NA | |
| 54 | ${ }_{\mathrm{H}}^{\mathrm{H}}$ | $\stackrel{\mathrm{H}}{\mathrm{H}}$ | 4-MeO2 $\mathrm{CC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHMe}$ | $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ | E | 90 41 | | ${ }_{1}^{140}$ | 6 | 100 17 | | |
| 55 | H | H | $4-\mathrm{H}_{2} \mathrm{NOCC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHMe}$ | $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4} \cdot \mathrm{HCl}$ | k | 41 | $\mathrm{Me}-\mathrm{Ea}$ | 195-196 | 6 | 17 | NA | |

kylamine portion of the molecule, and for optimum $\alpha+$ β blocking activity, this moiety requires (a) a three-atom separation of aryl from nitrogen, since compounds with a two-carbon and four-carbon chain, 28 and 70, respectively, were less active than their corresponding analogues with a three-carbon chain, 34, but retained some α-adrenoceptor blocking activity, and (b) a 1-methyl substituent, since its replacement by hydrogen or ethyl led to less active compounds, 33 and 59 , respectively. The gem-dimethyl analogue 35 was a good β-antagonist, but it was much less active at α-adrenoceptors.

Substitution in the aromatic ring was generally disadvantageous, but the profile of activity of the fluoro derivatives, 46-48, was similar to that of the unsubstituted compound 34 with a less favorable ratio of β to α potency in 47. Replacement of the CH_{2} group situated adjacent to the aryl group by O, NH, or N -alkyl afforded less active compounds, e.g., 62, 39, and 40. Effects of alteration of structure on α-adrenoceptor blocking activity were unpredictable. Several compounds, e.g., 40, 61, and 72, had an apparently higher ratio of α to β blockade but only at the expense of the latter.

The biological activities of the individual enantiomers of labetalol are shown in Table VI. From these results it may be seen that the β-adrenoceptor blocking activity is almost entirely due to the $R R$ enantiomer. In particular, the R configuration for the chiral center bearing the hydroxyl group is consistent with that of other arylethanolamines known to act at β-adrenoceptors. ${ }^{25}$ On the other hand, the α-blocking activity is mainly due to the $S R$ isomer and, to a lesser extent, to the $S S$ isomer. This observation is difficult to interpret, since labetalol represents the first arylethanolamine with potent α-blocking activity. However, if this antagonism is mediated by direct interaction with the α-receptor and not via an allosteric site, then it appears that the α-receptor will accommodate arylethanolamines with the chiral center bearing the hydroxyl group having either an R (as in epinephrine ${ }^{25 g}$) or S configuration.
α-Blockers, such as phentolamine (Regitine) or thymoxamine (Opilon), are known to lower blood pressure by inhibiting the stimulant effects of norepinephrine at vascular α-adrenoceptors. As a consequence, they dilate peripheral arterioles and cause a decrease in total peripheral resistance. This action is effective in lowering blood pressure in hypertensive patients but, in addition, it can cause postural hypotension plus an unpleasant and often unacceptable reflex tachycardia resulting from physiological efforts to maintain blood pressure. ${ }^{26}$ Therefore, nonselective α-blockers are seldom used on their own to treat hypertension. Conversely, the antihypertensive effect caused by β-blockers, such as propranolol (Inderal), is accompanied by a reduction in cardiac output. This mechanism would not be expected to cause rapid falls in blood pressure because the decrease in cardiac output is offset by an increase in peripheral resistance. ${ }^{26}$ Consequently, the simultaneous administration of drugs that block both α - and β-receptors would be expected to have an additive effect in lowering blood pressure while mini-
(25) (a) J. P. Beale and N. C. Stephenson, J. Pharm. Pharmacol., 24, 277 (1972). (b) D. Hartley and D. Middlemiss, J. Med. Chem., 14, 895 (1971). (c) A. M. Anderson, Acta Chem. Scand., Ser. B, 29, 239 (1975). (d) A. M. Anderson, ibid., 29, 891 (1975). (e) L. Almirante and W. Murmann, J. Med. Chem., 9, 650 (1966). (f) R. Howe and B. S. Rao, J. Med. Chem., 11, 1118 (1968). (g) P. Pratesi, A. La Manna, A. Campiglio, and V. Ghislandi, J. Chem. Soc., 2069 (1958).
(26) E. D. Frohlich, Arch. Intern. Med., 133, 1033 (1974).

Table V. Ketones

no.	structure	formula	method ${ }^{\text {a }}$	yield, \%	$\begin{gathered} \text { crystn } \\ \text { solvent } \end{gathered}$	mp or bp (mm), ${ }^{\circ} \mathrm{C}$
76	$4-\mathrm{FC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COMe}$	$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{FO}$	G	76		79 (1.25)
77	$4-\mathrm{AcNHC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COMe}$	$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{2}$	G	100	Al	130-132
78	$4-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{OCH}_{2} \mathrm{COMe}$	$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FO}_{2}{ }^{c}$	H	d		oil
79	$4-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{NMeCH}_{2} \mathrm{COMe}^{2}$	$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{FNO}$	H	69^{d}		88-92 (0.2)
80	$4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NMeCH}_{2} \mathrm{COMe}^{\text {a }}$	$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}$	H	80^{d}		95 (0.05)
81		$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{e}$	H	60	Ea	117-120
82		$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO} \cdot \mathrm{HCl}$	H	30^{d}		118-120

${ }^{a}$ See text. b See footnote b to Table I. ${ }^{c}$ Anal. C: calcd, 64.3; found, 63.8. ${ }^{d}$ Purified via complex with NaHSO_{3}. e Anal. C: calcd, 69.2; found, 68.6.

Table VI. Adrenoceptor Blocking Properties of Labetalol and Its Enantiomeric Components ${ }^{28}$

compd	blockade of cardiac β_{1} receptors ${ }^{a}$	blockade of vascular β_{2} receptors ${ }^{a}$	blockade of α_{1}-vascular receptors b^{2}
labetalol (34)	2.4	8	7.8
$R R$ isomer (90)	1.1	3.7	50.9
$S S$ isomer (92)	70.4	309	19.8
$R S$ isomer (91)	15.9	86	34.4
$S R$ isomer (89)	56.8	377	4.5
$R R+S R$ isomers	1.2	6.9	5.8

${ }^{a}$ Propanolol $=1 . \quad{ }^{b}$ Phentolamine $=1$. See footnotes b and c to Table IV.
Table VII. Relative Adrenoceptor-Blocking Actions of Labetalol, Phentolamine, and Propranolol in the Anesthetized Dog ${ }^{a, b}$

drug	α-blockade: $\mathrm{DR}_{10}, \mathrm{mg} / \mathrm{kg}$, for antagonism of PE-induced vasopressor responses	β-blockade: $\mathrm{DR}_{10}, \mathrm{mg} / \mathrm{kg},{ }^{c}$ for antagonism of IP-induced	
		positive chronotropy (β_{1} response)	vasodepression (β_{2} response)
labetalol	8.4	0.53	0.53
	(6.7-10.4)	(0.4-0.6)	(0.4-0.8)
phentolamine	1.2	>10.0	>10.0
	(0.9-1.6)		
propranolol	>3.0	0.13	0.03
		(0.09-0.17)	$(0.02-0.04)$

${ }^{a}$ Reference 4. ${ }^{b} 95 \%$ confidence limits are given in parentheses. ${ }^{c} \mathrm{IP}=$ isoproterenol; $\mathrm{PE}=$ phenylephrine.
mizing the side effects of either drug given independently. Although this therapeutically beneficial procedure has been established by Majid et al., ${ }^{27}$ using a combination of phentolamine and oxprenolol, it has the disadvantage that the absorption, pharmacokinetics, and metabolism of each drug are different and this may lead to problems in providing a balanced control of blood pressure. This is less likely to be the case with labetalol (34), where the biological activity is mainly due to the independent actions of two structurally related compounds, the $R R$ and $S R$ diastereomers. ${ }^{28}$

More recently, pharmacological studies have shown that labetalol is selective in blocking α_{1}-adrenoceptors ${ }^{4,29,30}$ (see Table IX) and that it possesses additional vasodilating actions that may contribute to the overall antihypertensive effect of the drug. ${ }^{31,32}$
(27) P. A. Majid, M. K. Meeran, M. E. Benaim, B. Sharma, and S. H. Taylor, Br. Heart J., 36, 588 (1974).
(28) R. T. Brittain, G. M. Drew, and G. P. Levy, Br. J. Pharmacol., 73, 282P (1981).
(29) G. M. Drew, Br. J. Pharmacol., 64, 293 (1978).
(30) A. G. H. Blakeley and R. J. Summers, Br. J. Pharmacol., 59, 643 (1977).
(31) R. C. Dage and C. P. Hsieh, Br. J. Pharmacol., 70, 287 (1980).
(32) T. Baum, R. W. Watkins, E. J. Sybertz, S. Vemulapalli, K. K. Pula, E. Eynon, S. Nelson, G. V. Vliet, J. Glennon, and R. M. Moran, J. Pharmacol. Exp. Ther., 218, 444 (1981).

Human pharmacology has confirmed the α - and β adrenoceptor blocking activities of labetalol, ${ }^{33}$ and clinical experience has shown it to be efficacious in reducing high blood pressure with minimal side effects. ${ }^{34}$ In practice, postural hypotension has rarely been observed when the drug is administered at recommended doses. ${ }^{6,34,35}$

Experimental Section

Melting points were determined in open capillary tubes on a Townson-Mercer apparatus and bave not been corrected. Compounds gave satisfactory UV, IR, and NMR spectral data and were obtained, respectively, on Perkin-Elmer Model 137 and 402 UV spectrophotometers, Unicam SP 100 and Perkin-Elmer 357 IR spectrophotometers, and Varian Associates A-60A and Per-kin-Elmer R12B spectrometers. Microanalyses were determined on a F \& M 185 CHN analyzer and by Dr. A. Bernhardt, 5251 Elbach über Engelskirchen, West Germany. Where analyses are indicated only by the symbols of the elements, analytical values obtained were within $\pm 0.4 \%$ of the calculated values. Unless stated otherwise, C, H, and N analyses of compounds in the Tables were all within $\pm 0.4 \%$ of the calculated values. Optical rotations were determined on the AA-10 automatic polarimeter in methanol
(33) G. Koch, Br. Heart J., 41, 192 (1979).
(34) B. N. Prichard and D. A. Richards, Br. J. Clin. Pharmacol., 8(suppl. 2), 293S (1979).
(35) F. D. Thompson, A. M. Joekes, and M. M. Hussein, Br. J. Clin. Pharmacol., 8, 129S (1978).
Table VIII. Comparison of Adrenoceptor-Blocking Actions of Labetalol, Propranolol, and Phentolamine in Isolated Tissues ${ }^{a, b}$

preparation	type of receptor	agonist	labetalol		propranolol		phentolamine	
			p A_{2}	slope	$\mathrm{p} A_{2}$	slope	$\mathrm{p} \mathrm{A}_{2}$	slope
rat vas deferens	α	norepinephrine	$\begin{gathered} 7.45 \\ (7.19-7.79) \end{gathered}$	$\begin{gathered} 1.03 \\ (0.88-1.19) \end{gathered}$	not tested		$\begin{gathered} 8.22 \\ (8.06-8.41) \end{gathered}$	$\begin{gathered} 1.22 \\ (0.98-1.38) \end{gathered}$
rat aortic strip	α	norepinephrine	$\begin{gathered} 7.42 \\ (6.98-7.81) \end{gathered}$	$\begin{gathered} 0.92 \\ (0.86-1.20) \end{gathered}$	not tested		$\begin{gathered} 8.32 \\ (8.01-8.69) \end{gathered}$	$\begin{gathered} 1.05 \\ (0.85-1.24) \end{gathered}$
rabbit aortic strip	α	norepinephrine	$\begin{gathered} 7.44 \\ (7.01-7.72) \end{gathered}$	$\begin{gathered} 1.21 \\ (0.99-1.38) \end{gathered}$	<4.0		$\begin{gathered} 8.43 \\ (8.11-8.92) \end{gathered}$	$\begin{gathered} 0.96 \\ (0.88-1.16) \end{gathered}$
guinea pig	β	isoproterenol	8.31	(0.95	8.81	1.23	(8.11-8.9 <5.0	
left atrium			(7.82-8.53)	(0.79-1.17)	(8.42-9.37)	(0.98-1.47)		
guinea pig trachea	β	isoproterenol	$\begin{gathered} 8.10 \\ (7.82-8.53) \end{gathered}$	$\begin{gathered} 0.90 \\ (0.71-1.09) \end{gathered}$	$\begin{gathered} 8.33 \\ (8.03-8.76) \end{gathered}$	$\begin{gathered} 0.82 \\ (0.67-0.96) \end{gathered}$	not tested	

Table IX. Relative Blocking Actions of Labetalol, ${ }^{a}$ Phentolamine, Thymoxamine, and Piperoxan at α_{1} - and α_{2}-Adrenoceptors ${ }^{b}$

	α-antagonist activity (p A_{2} values)	
postsynaptic adreno- ceptors, α_{1} (rat, rabbit	presynaptic adreno- ceptors, α_{2} (guinea aorta)	pig ileum)
labetalol	$7.0-7.5$	<5.0
phentolamine	$7.5-8.5$	8.5
thymoxamine	$7.0-7.5$	4.5
piperoxan	$6.5-7.0$	7.6

a^{a} Selectivity of other analogues was not determined.
${ }^{b}$ Reference 4.
at $22^{\circ} \mathrm{C}$ unless stated otherwise.
The isomeric purity of labetalol (34) and its isomers were determined by GLC. ${ }^{13}$ The isomeric purity of their O, N-dibenzyl derivatives were determined by HPLC on Partisil 10 using a 20 $\times 0.5 \mathrm{~cm}$ column and eluting with hexane-ethyl acetate-ammonia (SG 0.880) (55:45:0.1) at 250 psi ; detection was by UV at 280 nm .

Each general method discussed in the theoretical part of this paper is described here by only one representative example. Hydrogenations were carried out at room temperature and atmospheric pressure unless stated otherwise.

Methyl 2-Hydroxy-5-[1-hydroxy-2-[(3-oxo-3-phenylpropyl)amino]ethyl]benzoate Hydrochloride (8) (See Table I). A suspension of methyl 5 -[2-[(2-amino-1-hydroxyethyl)-amino]ethyl]-2-hydroxybenzoate hydrochloride ${ }^{1}(2.47 \mathrm{~g}, 0.01 \mathrm{~mol})$ in $\mathrm{EtOH}(70 \mathrm{~mL})$, $\mathrm{PhCOMe}(4.8 \mathrm{~g}, 0.04 \mathrm{~mol})$, and paraformaldehyde (0.7 g) was stirred under reflux for 6 h . Solvent was removed under reduced pressure, and the residue was triturated with $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ and recrystallized.

Preparation of Salicylamides (See Tables II-IV). Method A. 2-Hydroxy-4-[1-hydroxy-2-[N-(1-methylethyl)- \boldsymbol{N}-(phenylmethyl)amino]ethyl]benzamide (19). A solution of methyl 2-hydroxy-4-[1-hydroxy-2-[N-(1-methylethyl)- N-(phenylmethyl)amino]ethyl]benzoate ($\mathbf{7 5} ; 3.05 \mathrm{~g}, 0.089 \mathrm{~mol}$) (prepared by methods previously described ${ }^{1}$) in $\mathrm{EtOH}(50 \mathrm{~mL})$ with $\mathrm{NH}_{4} \mathrm{OH}$ (SG $0.880,30 \mathrm{~mL}$) was left to stand at room temperature for 1 week and evaporated to dryness. The residue was extracted with $\mathrm{Et}_{2} \mathrm{O}$, the filtered extract was evaporated, and the product was crystallized from benzene to give the amide 19.

2-Hydroxy-4-[1-hydroxy-2-[(1-methylethyl)amino]ethyl]benzamide Benzoate Salt (74). The preceding amide (0.46 g , $0.001 \mathrm{~mol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was hydrogenated in the presence of $10 \% \mathrm{Pd} / \mathrm{C}(0.1 \mathrm{~g})$ for 19 min . Catalyst and solvent were removed to leave a glassy residue, which crystallized from a mixture of $\mathrm{Et}_{2} \mathrm{O}$ and EtOAc as white prisms: yield $0.24 \mathrm{~g} ; \mathrm{mp}$ $114-116^{\circ} \mathrm{C}$. The base was converted into a benzoate salt, 74 , that crystallized from i - PrOH as colorless prisms, $\mathrm{mp} 146-152^{\circ} \mathrm{C}$.

Method B. 5-(2-Amino-1-hydroxyethyl)-2-hydroxybenzamide Hydrochloride. A solution of methyl 5-(2-amino-1-hydroxyethyl)-2-hydroxybenzoate hydrochloride ${ }^{1}$ ($5 \mathrm{~g}, 0.02 \mathrm{~mol}$) in $\mathrm{NH}_{4} \mathrm{OH}(\mathrm{SG} 0.880,100 \mathrm{~mL}$) was left at room temperature for 8 days and evaporated under reduced pressure. The residue crystallized from $\mathrm{MeOH}-E t O A c$ to give the amide hydrochloride $3.5 \mathrm{~g}(62 \%)$, which did not melt below $400^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{9} \mathrm{H}_{12}{ }^{-}\right.$ $\left.\mathrm{N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Method C. 2-Hydroxy-5-[[N-(1-methylethyl)- N-(phenylmethyl)amino]acetyl]benzamide Hydrochloride (14). A solution of methyl 2-hydroxy-5-[[N-(1-methylethyl)- N-(phenylmethyl)amino]acetyl]benzoate hydrochloride ${ }^{1}(15 \mathrm{~g}, 0.04 \mathrm{~mol})$ in $\mathrm{MeOH}(125 \mathrm{~mL})$ and $\mathrm{NH}_{4} \mathrm{OH}(\mathrm{SG} 0.880,125 \mathrm{~mL})$ was left to stand at room temperature for 6 days and evaporated to dryness. The residue was extracted into $\mathrm{Et}_{2} \mathrm{O}(3 \times 150 \mathrm{~mL})$ and treated with HCl in $\mathrm{Et}_{2} \mathrm{O}$ to precipitate an oil, which when boiled with EtOAc afforded colorless crystals of 14.

2-Hydroxy-5-[1-hydroxy-2-[(1-methylethyl)amino]ethyl]benzamide Hydrochloride (21). A solution of 14 (4.15 g, 0.011 $\mathrm{mol})$ in $\mathrm{MeOH}(250 \mathrm{~mL})$ was hydrogenated in the presence of 10% $\mathrm{Pd} / \mathrm{C}(1 \mathrm{~g})$ until uptake of H_{2} ceased (40 min). Catalyst and
solvent were removed to yield the hydrochloride.
Method D. 2-Hydroxy-5-[[N-(1-methyl-3-phenyl-propyl)- \boldsymbol{N}-(phenylmethyl)amino]acetyl]benzamide (18). 5-(Bromoacetyl)-2-hydroxylbenzamide ${ }^{37}(2.6 \mathrm{~g}, 0.01 \mathrm{~mol})$ and N-(1-methyl-3-phenylpropyl)phenylmethylamine ($4.8 \mathrm{~g}, 0.02 \mathrm{~mol}$) in $\mathrm{EtCOMe}(50 \mathrm{~mL})$ were refluxed for 40 min . Solvent was removed by evaporation, and the residue was treated with benzene. The mixture was filtered, the filtrate was evaporated to dryness, and the residual base was treated with excess HCl in EtOH . The hydrochloride of 18 crystallized from the solution, mp 139-141 ${ }^{\circ} \mathrm{C}$.

2-Hydroxy-5-[1-hydroxy-2-[(1-methyl-3-phenylpropyl)amino]ethyl]benzamide Hydrochloride (34). A solution of the preceding hydrochloride ($0.75 \mathrm{~g}, 0.0016 \mathrm{~mol}$) in $\mathrm{EtOH}(20 \mathrm{~mL})$ was hydrogenated in the presence of a mixture of $10 \% \mathrm{PdO} / \mathrm{C}$ $(0.05 \mathrm{~g})$ and $10 \% \mathrm{Pt} / \mathrm{C}(0.05 \mathrm{~g})$. Removal of catalyst and solvent gave the hydrochloride.

Method E. 2-Hydroxy-5-[1-hydroxy-2-[(1-methyl-2phenylethyl)amino]ethyl]benzamide Hydrochloride (28). A solution of 15 ($9.35 \mathrm{~g}, 0.025 \mathrm{~mol}$), 3-phenyl-2-propanone (4.02 g , 0.03 mol), and acetic acid (1.5 mL) in $\mathrm{MeOH}(200 \mathrm{~mL})$ was hydrogenated in the presence of $10 \% \mathrm{PdO} / \mathrm{C}(1.0 \mathrm{~g})$ and $10 \% \mathrm{Pt} / \mathrm{C}$ $(1.0 \mathrm{~g})$ catalysts. When absorption of H_{2} was complete (33 h), catalysts and solvent were removed, and the residual oil in EtOH was treated with EtOAc and HCl in $\mathrm{Et}_{2} \mathrm{O}$ to precipitate the hydrochloride 28.

Method F. 2-Hydroxy-5-[1-hydroxy-2-[(3-phenylpropyl)amino]ethyl]benzamide Hydrochloride (33). A suspension of 5-(2-amino-1-hydroxyethyl)-2-hydroxybenzamide hydrochloride ($2.3 \mathrm{~g}, 0.01 \mathrm{~mol}$) in $\mathrm{MeOH}(50 \mathrm{~mL})$ was neutralized with $\mathrm{NaOH}(0.4 \mathrm{~g}, 0.01 \mathrm{~mol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$, concentrated, and heated on the steam bath for 1 h with a solution of phenylpropanal ($1.34 \mathrm{~g}, 0.01 \mathrm{~mol}$) in EtOH (100 mL). The cooled solution was hydrogenated in the presence of $10 \% \mathrm{PdO} / \mathrm{C}(0.5$ $\mathrm{g})$ and $10 \% \mathrm{Pt} / \mathrm{C}(0.5 \mathrm{~g})$. After absorption of 1 mol of H_{2}, catalyst and solvent were removed, and the residue was treated with 2 N HCl and $\mathrm{Et}_{2} \mathrm{O}$. Some insoluble gummy hydrochloride was separated, and the aqueous acidic solution was neutralized with NaHCO_{3} and extracted with EtOAc. Addition of HCl in $\mathrm{Et}_{2} \mathrm{O}$ to the organic solution precipitated a hydrochloride, which was combined with the above gum and crystallized from $\mathrm{MeOH}-$ EtOAc to give 33.

N,2-Dihydroxy-5-[1-hydroxy-2-[(1-methylethyl)amino]ethyl]benzamide (26). A solution of methyl 5-[1-hydroxy-2[N-(1-methylethyl)- N-(phenylmethyl)amino]ethyl]-2-(phenylmethoxy) benzoate hydrochloride ${ }^{1}$ ($73 ; 4 \mathrm{~g}, 0.008 \mathrm{~mol}$) in MeOH $\left(30 \mathrm{~mL}\right.$) was added to a solution of $\mathrm{NH}_{2} \mathrm{OH}$ (from 32.6 g of $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}$ and 11 g of Na in MeOH$)(300 \mathrm{~mL})$. After 6 weeks at room temperature, the solution was evaporated and the residue was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 150 \mathrm{~mL})$. Evaporation of the extract afforded an oil, which was dissolved in hot cyclohexane and cooled to yield N-hydroxy-5-[1-hydroxy-2-[N-(1-methylethyl)- N-(phe-nylmethyl)amino]ethyl]-2-(phenylmethoxy)benzamide as a white solid: yield $2.2 \mathrm{~g}(58 \%) ; \mathrm{mp} 134-137^{\circ} \mathrm{C}$ dec; recrystallization from cyclohexane raised the mp to $138-140^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}\right)$ $\mathrm{C}, \mathrm{H}, \mathrm{N}$. This amine ($1.45 \mathrm{~g}, 0.0033 \mathrm{~mol}$) in $\mathrm{MeOH}(32 \mathrm{~mL})$ was hydrogenated in the presence of $10 \% \mathrm{Pd} / \mathrm{C}(0.4 \mathrm{~g})$ suspended in $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL})$. When the theoretical amount of H_{2} had been absorbed (15 min), the catalyst and solvents were removed and the residue was triturated with THF, followed by EtOH , to yield 26.

2-Hydroxy-5-[1-hydroxy-2-[(3-oxo-3-phenylpropyl)amino]ethyl]benzamide Hydrochloride (61). A suspension of 5-(2-amino-1-hydroxyethyl)benzamide hydrochloride (1.2 g , $0.005 \mathrm{~mol})$, paraformaldehyde (0.4 g), and acetophenone (2.4 g , 0.005 mol) in EtOH (50 mL) was refluxed for 6 h and filtered, and the filtrate was evaporated under reduced pressure. The residual oil was triturated with dry $\mathrm{Et}_{2} \mathrm{O}$ and crystallized twice from i-PrOH.

Preparation of Ketones (See Table V). Method G. 4-(4-Fluorophenyl)-2-butanone (76). 4-(4-Fluorophenyl)-3-buten-
(36) M. J. Daly, J. J. Flook, and G. P. Levy, Br. J. Pharmacol., 53, 173 (1975).
(37) R. Granger, M. Corbier, and J. Vinas, C. R. Hebd. Seances Acad. Sci., 234, 1058 (1952).

2-one ${ }^{38}(2.90 \mathrm{~g}, 0.018 \mathrm{~mol})$ in EtOAc (3.50 mL) was hydrogenated in the presence of $10 \% \mathrm{Pd} / \mathrm{C}(0.6 \mathrm{~g})$. When uptake of H_{2} had ceased (20 min), the catalyst and solvent were removed, and the ketone 76 was purified by distillation.
Method H. 3-[(4-Fluorophenyl)methylamino]-2-propanone (79). 3-Chloro-2-propanone ($33.3 \mathrm{~g}, 0.36 \mathrm{~mol}$) was added dropwise over a period of 10 min to a stirred mixture of 4 -fluoro- N methylbenzamine ${ }^{39}(22.5 \mathrm{~g}, 0.18 \mathrm{~mol})$ and $\mathrm{NaHCO}_{3}(36 \mathrm{~g})$ in EtOH (90 mL). After 21 h at reflux, the mixture was filtered, and the filtrate was evaporated under reduced pressure. The residue in $5 \mathrm{~N} \mathrm{HCl}(100 \mathrm{~mL})$ was washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 150 \mathrm{~mL})$ and basified (pH 14) with NaOH . Extraction with $\mathrm{Et}_{2} \mathrm{O}(3 \times 200 \mathrm{~mL})$ gave the crude ketone as a red oil. This was purified by treating a solution in $\mathrm{EtOH}(300 \mathrm{~mL})$ with a solution of $\mathrm{NaHSO}_{3}(32.4$ g) in $\mathrm{H}_{2} \mathrm{O}(70 \mathrm{~mL})$. After 4 h at $0^{\circ} \mathrm{C}$, the precipitate was filtered off, washed with EtOH , and dissolved in $2 \mathrm{~N} \mathrm{HCl}(200 \mathrm{~mL})$. The solution was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 125 \mathrm{~mL})$, adjusted to pH 14 with NaOH , and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 200 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ ethereal extract was evaporated to give the pure ketone 79.

Preparation of the Enantiomeric Components of Labetalol (34). [$\left.\boldsymbol{R}-\left(\boldsymbol{R}^{*}, \boldsymbol{R}^{*}\right)\right]-\alpha$-Methyl- \boldsymbol{N}-(1-phenylethyl)benzenepropanamine Hydrochloride (84). (R)-(+)- α-Methylbenzylamine $(83 ; 36.3 \mathrm{~g}, 0.3 \mathrm{~mol})$ and benzylacetone $(74 \mathrm{~g}, 0.5 \mathrm{~mol})$ in $\mathrm{EtOH}(400 \mathrm{~mL})$ were hydrogenated at 50 psi in the presence of Raney nickel ($\sim 4 \mathrm{~g}$) for 120 h . The catalyst and the solvent were removed, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(900 \mathrm{~mL})$. The organic solution was washed with $2 \mathrm{~N} \mathrm{HCl}(4 \times 150 \mathrm{~mL})$ (to remove any α-methylbenzylamine) and $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ and then dried and evaporated. The residue was triturated with $\mathrm{Et}_{2} \mathrm{O}$ and collected: yield $78.8 \mathrm{~g}(91 \%)$; isomer ratio by GLC, $90: 10(R R / S R)$. The solid was recrystallized twice from $\mathrm{MeOH}-E t O A c$ as white needles: yield 37%; mp $223-224.5^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+58^{\circ}$. Anal. ($\mathrm{C}_{18^{-}}$ $\left.\mathrm{H}_{23} \mathrm{~N} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Similarly prepared from (S)-(-)- α-methylbenzylamine was the $(S S)$-amine: yield $43 \% ; \mathrm{mp} 219-222^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-62^{\circ}$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N} \cdot \mathrm{HCl}\right) \mathrm{H}, \mathrm{N}$; C: calcd, 74.59; found, 75.2.
(R)- α-Methylbenzenepropanamine Hydrochloride (86). [R - $\left.\left(R^{*}, R^{*}\right)\right]-\alpha$-Methyl- N-(1-phenylethyl)benzenepropanamine hydrochloride ($11.8 \mathrm{~g}, 0.04 \mathrm{~mol}$) was basified with saturated NaHCO_{3} solution and extracted with EtOAc. The extracts were dried and evaporated. The residue was dissolved in EtOH (300 mL) and hydrogenated at 50 psi for 20 h over $10 \% \mathrm{PdO} / \mathrm{C}(4.0$ g). The catalyst and solvent were removed, and a solution of the residue in $\mathrm{Et}_{2} \mathrm{O}$ was treated with ethereal HCl to give white needles: yield $5.3 \mathrm{~g}\left(70 \%\right.$); $\mathrm{mp} 114-115{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$); $[\alpha]_{\mathrm{D}}+9.3^{\circ}$ [lit. ${ }^{18} 113.5-114.5^{\circ} \mathrm{C}$; $\left.[\alpha]_{\mathrm{D}}+6.8^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$.

Similarly prepared was the hydrochloride of the (S)-amine: yield 76%; mp $114-115^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-10.0^{\circ}\left[\right.$ lit. ${ }^{18} 113-114^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}$ $-7.2^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)$].
(R)- α-Methyl- N-(phenylmethyl)benzenepropanamine Hydrochloride (87). (R)- α-Methylbenzenepropanamine hydrochloride ($4 \mathrm{~g}, 0.022 \mathrm{~mol}$) was basified with saturated NaHCO_{3} solution (100 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 100 \mathrm{~mL})$. The combined extracts were dried and evaporated. The residue was dissolved in absolute $\mathrm{EtOH}(100 \mathrm{~mL}$) containing PhCHO (2.51 $\mathrm{g}, 0.023 \mathrm{~mol}$), and the solution was stirred at room temperature for 0.5 h . The ethanolic solution was hydrogenated over prereduced $5 \% \mathrm{PtO} / \mathrm{C}(1 \mathrm{~g})$ in $\mathrm{EtOH}(50 \mathrm{~mL})$ for 16 h . The catalyst and the solvent were removed, and the residue was purified by chromatography on a column of silica and elution with $\mathrm{Et}_{2} \mathrm{O}$. The product was dissolved in dry $\mathrm{Et}_{2} \mathrm{O}$, and the solution was treated with an excess of ethereal HCl to give the salt: yield $8.65 \mathrm{~g}(73 \%)$; $\mathrm{mp} 186-188^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}\right)$; $[\alpha]_{\mathrm{D}}+5.0^{\circ}$. Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N} \cdot \mathrm{HCl}\right)$ C, H, N.

Similarly prepared was the (S)-amine: yield 77%; mp 186-188 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-6^{\circ}$. Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(\boldsymbol{R})-2-Hydroxy-5-[\boldsymbol{N}-(1-methyl-3-phenylpropyl)- \boldsymbol{N} (phenylmethyl)amino]acetyl]benzamide (88). A suspension of the hydrochloride ($87 ; 4.5 \mathrm{~g}, 0.0163 \mathrm{~mol}$) in saturated NaHCO_{3} solution was extracted with $\mathrm{EtOAc}(4 \times 100 \mathrm{~mL})$. The combined
(38) O. Cervinka and O. Kriz, Collect. Czech Chem. Commun., 38, 294 (1973).
(39) B. L. Fox and R. J. Doll, J. Org. Chem., 38, 1136 (1973).
extracts were washed with NaHCO_{3} solution, dried, and evaporated. The residual amine in $\mathrm{EtCOMe}(125 \mathrm{~mL})$ containing propylene oxide (20 mL) was treated with 5 -(bromoacetyl)salicylamide ${ }^{37}$ ($3.85 \mathrm{~g}, 0.0149 \mathrm{~mol}$), and the mixture was heated under reflux for 2.5 h . The solvents were removed, and a solution of the residue in EtOAc was washed with saturated NaHCO_{3} solution, dried, and evaporated. The product in EtOAc was filtered through a column of silica (240 g) to give white microcrystals: yield $67 \% ; \mathrm{mp} 122-123^{\circ} \mathrm{C}$ (from i - PrOH) $;[\alpha]_{\mathrm{D}}+18^{\circ}$. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Similarly prepared was the corresponding (S)-glycyl compound: yield 68%; mp $122-124^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-20^{\circ}$. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}\right) \mathrm{C}$, H, N.

2-Hydroxy-5-[1-hydroxy-2-[(1-methyl-3-phenylpropyl)amino]ethyl]benzamide Hydrochloride ($R \boldsymbol{R} / \boldsymbol{S R}$ isomers, 1:1, 90 and 89). A solution of (R)-2-hydroxy-5-[[N-(1-methyl-3-phenylpropyl)- N-(phenylmethyl)amino]acetyl] benzamide (88; 4.6 $\mathrm{g}, 0.011 \mathrm{~mol}$) in $\mathrm{EtOH}(500 \mathrm{~mL})$ containing $\mathrm{AcOH}(1 \mathrm{~mL})$ was hydrogenated over $10 \% \mathrm{Pd} / \mathrm{C}(0.5 \mathrm{~g})$ and $10 \% \mathrm{PtO} / \mathrm{C}(0.5 \mathrm{~g})$ at room temperature and pressure. The absorption of $\mathrm{H}_{2}(0.505 \mathrm{~L}$, theoretical 0.495 L) required 18 h . The suspension was filtered, and the filtrate was evaporated at reduced pressure to afford the crude product as a yellow gum: yield 5 g ; isomer ratio by GLC, 51.2:48.8 ($R R / S R$). This gum was converted into a hydrochloride: yield $2.6 \mathrm{~g}(64 \%) ; \mathrm{mp} 191-192^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+10.6^{\circ}$; isomer ratio by GLC, 52.2: $47.8(R R / S R)$. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

The analogue, (S)-2-hydroxy-5-[[N-(1-methyl-3-phenyl-propyl)- N-(phenylmethyl)amino]acetyl]benzamide (16.2 g), was converted similarly into the mixture of hydrochlorides of the $S S$ $+R S$ isomers of labetalol (92 and 91): yield $8.85 \mathrm{~g}(62 \%) ;[\alpha]_{\mathrm{D}}$ $-10.9^{\circ} ; \mathrm{mp} 191-192^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
[\boldsymbol{R} - $\left.\left(\boldsymbol{R}^{*}, \boldsymbol{R}^{*}\right)\right]-5-[1-H y d r o x y-2-[\boldsymbol{N}$-(1-methyl-3-phenyl-propyl)- N-(phenylmethyl)amino]ethyl]-2-(phenylmethoxy)benzamide ($\boldsymbol{R} \boldsymbol{R}$ Isomer) and $\left[\mathcal{S}-\left(R^{*}, S^{*}\right)\right]-5-[1-$ Hydroxy-2-[\boldsymbol{N}-(1-methyl-3-phenylpropyl)- \boldsymbol{N}-(phenyl-methyl)amino]ethyl]-2-(phenylmethoxy)benzamide (SR Isomer). A suspension of 2-hydroxy-5-[1-hydroxy-2-[(1-methyl-3-phenylpropyl)amino]ethyl]benzamide hydrochloride ($R R$ $+S R$ isomers; $82.1 \mathrm{~g}, 0.225 \mathrm{~mol}$) was stirred in saturated NaHCO_{3} solution (1 L). The organic base was filtered off and dried. A mixture of the base ($72 \mathrm{~g}, 0.220 \mathrm{~mol}$), $\mathrm{PhCH}_{2} \mathrm{Cl}(59.25 \mathrm{~g}, 0.470$ mol), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(225 \mathrm{~g})$, and $\mathrm{NaI}(17.5 \mathrm{~g})$ in $\mathrm{EtCOMe}(2.7$ L) was stirred at reflux for 5 h . The cooled solution was filtered, and the filtrate was evaporated to dryness under reduced pressure. The residue was dissolved in EtOAc (128 mL), and aliquots were injected onto the column of a Waters Prep LC/system 500 and eluted with hexane-EtOAc- $\mathrm{NH}_{3}(\mathrm{SG} 0.880)(55.45: 0.1)$ at 350 mL min^{-1}. The appropriate fractions from all the separations were combined and evaporated under reduced pressure to afford the $R R$ isomer (yield 55.7 g ; isomer ratio by HPLC, 98.7:1.3) and the $S R$ isomer [yield 57.5 g ; isomer ratio by HPLC, 98.7:1.3 ($S R: R R$)] as gums. The two products were rechromatographed to effect further purification. The $R R$ isomer ($40.2 \mathrm{~g}, 35.3 \%$) was obtained with an isomer ratio of 99.9:0.1 and $[\alpha]_{D}-30.1^{\circ}$. The $S R$ isomer $(35.7 \mathrm{~g}, 31.3 \%)$ was obtained with an isomer ratio of 99.8:0.2 and $[\alpha]_{\mathrm{D}}+3.5^{\circ}$.

In a similar manner, the $S S$ and $R S$ isomers were isolated, with an isomeric purity by HPLC of $>99.6 \%$, from a $1: 1$ mixture of their hydrochlorides.
[$R-\left(R^{*}\right)$]-2-Hydroxy-5-[1-hydroxy-2-[(1-methyl-3phenylpropyl)amino]ethyl]benzamide Hydrochloride (R R isomer, 90). [R-($\left.\left.R^{*}, R^{*}\right)\right]-5-[1-\mathrm{Hydroxy}-2-[N$-(1-methyl-3-phenylpropyl)- N-(phenylmethyl)amino]ethyl]-2-(phenylmethoxy) benzamide ($19.1 \mathrm{~g}, 0.038 \mathrm{~mol}$) in $\mathrm{EtOH}(220 \mathrm{~mL})$ was hydrogenated over $10 \% \mathrm{Pd} / \mathrm{C}(1 \mathrm{~g})$ until the theoretical volume of $\mathrm{H}_{2}(1.68 \mathrm{~L})$ had been absorbed. The catalyst was filtered off, and the solvent was evaporated under reduced pressure to give the base as a gum, which slowly solidified: yield $11.7 \mathrm{~g}(94.9 \%) ;[\alpha]_{\mathrm{D}}$ -21.7°; isomeric purity by GLC $>99 \%$. This base in EtOAc was converted into the hydrochloride: yield $16.9 \mathrm{~g}(87 \%) ; \operatorname{mp} 195-196$ ${ }^{\circ} \mathrm{C}^{40}\left[{ }^{4}\right]_{\mathrm{D}}-28.9^{\circ}$; isomeric purity by GLC $>99 \%$. Anal. ($\mathrm{C}_{19}{ }^{-}$ $\mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl}$) C, H, N.

In a similar manner were prepared the $S R$ isomer (89: $[\alpha]_{D}$ $+34.2^{\circ}$; isomeric purity by GLC $>99 \%$; hydrochloride: recrystallized from i-PrOH-hexane; mp $174-175{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+51.7^{\circ}$; isomeric purity by GLC $>99 \%$. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}$, N), the $S S$ isomer (92: $[\alpha]_{\mathrm{D}}+21.8^{\circ}$, isomeric purity by GLC $>99 \%$; hydrochloride: $\mathrm{mp} 137-139^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+28.5^{\circ}$; isomeric purity by GLC 97%. Anal. ($\left.\left.\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}\right)$, and the $R S$ isomer (91: $[\alpha]_{\mathrm{D}}-36.2^{\circ}$; isomeric purity by GLC $>99 \%$; hydrochloride: $\operatorname{mp~} 174-176^{\circ} \mathrm{C} ;[\alpha]_{D}-48.6^{\circ} ;[\alpha]_{D}$ calcd to dry wt -50.1°; isomeric purity by GLC 94%. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{H}_{2} \mathrm{O}_{3} \cdot \mathrm{H}-\right.$ $\left.\mathrm{Cl} \cdot 0.13 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right)^{41} \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Biological Determinations. ${ }^{5} \alpha$-Adrenoceptor and β-adrenoceptor blocking potencies were determined in anesthetized dogs. Anesthesia was induced with thiopentone ($25 \mathrm{mg} / \mathrm{kg}$) intravenously and maintained with barbitone $(250 \mathrm{mg} / \mathrm{kg})$ intraperitoneally. Animals were bilaterally vagotomized and were artificially respired with room air through a cuffed endotracheal tube using a stroke volume of $13 \mathrm{~mL} / \mathrm{kg}$ and a rate of 20 strokes $/ \mathrm{min}$. Blood pressure was recorded from a femoral artery, and the pulse pressure was used to trigger a heart rate meter.

One agonist-antagonist combination was tested in each dog. Dose-response curves were obtained by the sequential intravenous injection of increasing doses of agonist before and from 15 min after administration of cumulative doses of antagonist. Antagonists were tested at three or more dose levels in each experiment. More detailed descriptions of the methods used are given in the papers by Daly et al. ${ }^{36}$ and Kennedy and Levy. ${ }^{22 b}$

Acknowledgment. We thank Drs. I. C. Coates, R. Tuddenham, and P. Toon, P. Manley, D. K. Waddell, C. Harris, G. Waugh, and Mrs. C. Sherlock for the preparation of some of these compounds. Spectral and analytical data were provided by Dr. J. H. Hunt and his staff, and pharmacological results were provided by Dr. R. T. Brittain and his staff.

[^4]
[^0]: ${ }^{a}$ See footnote b to Table I.

[^1]: (10) A. Bell, M. J. Boyce, W. I. Burland, and D. D. Underwood, Br. J. Clin. Pharmacol., 9, 299P (1980).
 (11) J. J. Baldwin, W. C. Lumma, G. F. Lundell, G. S. Ponticello, A. W. Raab, E. L. Engelhardt, R. Hirschmann, C. S. Sweet, and A. Scriabine, J. Med. Chem., 22, 1284 (1979).
 (12) J. Am. Med. Assoc., 242, 2467 (1979).

[^2]: (13) G. Munro, J. H. Hunt, L. R. Rowe, and M. B. Evans, Chromatographia, 11, 440 (1978).
 (14) Y. Nakagawa, N. Shimamoto, M. Nakozawa, and S. Imai, Jpn. J. Pharmacol., 30, 743 (1980).
 (15) Since this work was completed a synthesis of these enantiomers has been disclosed: E. H. Gold and W. Chang, Eur. Pat. Appl. 9702 (1980).
 (16) R. S. Cahn, C. K. Ingold, and V. Prelog, Experientia, 12, 81 (1956).

[^3]: (22) (a) J. B. Farmer, I. Kennedy, G. P. Levy, and R. J. Marshall, Br. J. Pharmacol., 45, 660 (1972). (b) I. Kennedy and G. P. Levy, ibid., 53, 585 (1975).
 (23) O. Arunlakshana and H. O. Schild, Br. J. Pharmacol., 14, 48 (1959).
 (24) C. H. Blackburn, L. J. Byrne, V. A. Cullum, J. B. Farmer, and G. P. Levy, J. Pharm. Pharmacol., 21, 488 (1969).

[^4]: (40) A polymorphic form, mp $137-139^{\circ} \mathrm{C}$ has also been obtained.
 (41) The hydrochloride of the $R S$ isomer contained entrained EtOAc.

